Data augmentation by combining feature selection and color features for image classification

نویسندگان

چکیده

<span lang="EN-US">Image classification is an essential task in computer vision with various applications such as bio-medicine, industrial inspection. In some specific cases, a huge training data required to have better model. However, it true that full label costly obtain. Many basic pre-processing methods are applied for generating new images by translation, rotation, flipping, cropping, and adding noise. This could lead degrade the performance. this paper, we propose method augmentation based on color features information combining feature selection. combination allows improving accuracy. The proposed approach evaluated several texture datasets using local binary patterns features.</span>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

H-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data

Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...

متن کامل

Combining feature selection and feature reduction for protein classification

We use the n-grams descriptors for a protein classification task. As they are automatically generated, we obtain many irrelevant and/or redundant descriptors. In this paper, we evaluate various strategies of feature selection and feature reduction. First, we evaluate separately the efficiency of a filtering feature selection algorithm and a feature reduction on the basis of a singular value dec...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Power Electronics and Drive Systems

سال: 2022

ISSN: ['2722-2578', '2722-256X']

DOI: https://doi.org/10.11591/ijece.v12i6.pp6172-6177